
1 

Blue Gene/Q 
Power-Efficient Parallel Computation 

Bob Walkup (walkup@us.ibm.com) 
IBM Research, Yorktown Heights NY 

Hardware Highlights 

Programming Strategies 

Optimization Resources 

Performance Tools 

Special Features 



2 

BG/Q Hardware Highlights 

16 “A2” cores on each node, 1.6 GHz, 4 hardware threads/core 
16 GB memory on each node, evenly partitioned at boot time  
5D torus integrated network, 20 links/node, 2 Gbits/sec per link 
 
Simple low-power cores, key feature is 4 hardware threads per core. 
In-order execution, no instruction-level parallelism. 
One execution unit (XU) for integer, load, store, branch, etc. 
One auxiliary execution unit (AXU) for floating-point operations. 
Support for 4-way SIMD instructions … QPX 
 
Max issue rate is one instruction/cycle when there is one thread/core, 
and one instruction/cycle from each of XU and AXU for two or more threads/core. 
 
Key idea: use multiple threads per core to maximize instruction throughput. 
Can effectively fill in cycles that would be stalled due to memory access 
or due to pipeline dependencies. 



3 

BG/Q  Power  Efficiency 

On BG/Q power efficiency comes from squeezing as many instructions as 
possible through each low-power core by using multiple threads per core. 
 
Performance per thread is very low relative to current high-end cores, 
but you have a huge number of threads (~10^6) available. 
 
For example, IBM Power7 performance per core is about ~3.6x faster, and 
performance per thread is ~4x - >10x faster, but BG/Q has higher Flops/Watt 
 
BG/Q is tops on the green 500 list, based on Linpack, and is in practice  
more efficient in terms of application throughput per Watt for a wide range 
of applications. 
 
Low performance per thread limits time to solution unless the application  
supports a large number of threads and/or processes. 



4 

BG/Q  Conventional Programming Methods 

Most common parallel methods : MPI optionally with OpenMP or Pthreads. 
 
The choice may be determined by the memory requirement per process: 
The compute-node kernel (CNK) partitions memory “evenly” at boot time. 
 
 Processes/node MB/process %hardware 

64 206 80.4% 
32 460 89.8% 

16 970 94.7% 
8 1929 94.2% 
4 3969 96.9% 

Results are with BG_MAPALIGN16=1 for 16-64 ranks/node 
using OMP_STACKSIZE=1M and a small BG/Q partition, and a 
small program text region.  The memory cost can grow with a 
larger number of processes.  Data from Sept 30, 2012. 



5 

Programming Methods 
Mira Science Benchmarks 

MILC   MPI only  32 ranks/node  2 threads/core 
GFMC   MPI + OpenMP   8 ranks/node  2 threads/core 
NEK   MPI only  32 ranks/node  2 threads/core 
GTC   MPI + OpenMP  16 ranks/node  4 threads/core 
LS3DF   MPI + OpenMP  32 ranks/node  4 threads/core   
GFDL   MPI + OpenMP   8 ranks/node  4 threads/core 
DNS   MPI only  32 ranks/node  2 threads/core 
FLASH   MPI + OpenMP  16 ranks/node  4 threads/core 
NAMD   PAMI + Pthreads    4 ranks/node  4 threads/core 
GPAW   MPI + ESSLSMP 32 ranks/node  4 threads/core 
 
Threading was added to FLASH and NAMD, and OpenMP was enabled  for 
GTC in  order to make better use of BG/Q resources.  MILC, NEK, and DNS  
distribute the memory requirement and scale well without requiring threading. 



6 

BG/Q  Hardware Counter Data 
Mira Science Benchmarks -  Instruction Mix 

Code thds/core FPU% FXU% FP ops/inst Issue rate %max rate GFlops/node
MILC 2 43.3 56.7 1.44 0.63 35.6 10.1
GFMC 2 30.1 69.9 3.16 0.29 20.2 7.0
NEK 2 22.4 77.6 3.32 0.50 39.1 9.6
GTC 4 32.0 68.0 1.42 0.69 47.2 8.1
LS3DF 4 49.2 50.9 6.25 0.51 25.9 40.1
GFDL 4 40.3 59.7 1.29 0.89 52.8 11.8
DNS 2 19.7 80.3 1.32 0.59 47.6 3.9
FLASH 4 20.7 79.3 1.45 0.45 35.8 3.5
NAMD 2 20.1 79.9 2.25 0.48 38.6 5.6
GPAW 4 17.1 82.9 6.79 0.60 49.9 17.9
AVG 3 29.5 70.5 2.87 0.56 39.3 11.8

These codes use 2-4 hardware threads per core and achieve an average of 
roughly ~40% of the maximum possible issue rate from each core.  Five of the ten 
applications have FP ops/inst > 2, indicating significant SIMD instructions.  Notice 
that GFlops/node is not strongly correlated with instruction issue rate.   



7 

BG/Q  Hardware Counter Data 
Mira Science Benchmarks – Cache and Memory 

Code L1% L1P% L2% DDR% LD B/cycle ST B/cycle TOT B/cycle
MILC 94.8 3.8 0.3 1.2 8.4 2.6 11.0
GFMC 72.9 22.4 3.0 1.8 7.1 3.3 10.4
NEK 91.1 6.1 2.1 0.8 4.6 1.9 6.5
GTC 94.4 1.5 3.0 1.2 5.6 2.7 8.3
LS3DF 81.3 15.1 0.8 2.8 8.4 3.8 12.2
GFDL 92.7 5.3 0.7 1.2 6.4 4.8 11.3
DNS 94.5 2.6 1.8 1.1 2.6 2.5 5.1
FLASH 91.2 1.4 6.7 0.7 1.7 1.6 3.4
NAMD 89.2 0.0 10.9 0.0 0.2 0.2 0.4
GPAW 91.9 5.7 1.9 0.5 3.8 1.0 4.8
AVG 89.4 6.4 3.1 1.1 4.9 2.4 7.3

Four of the ten applications have an average requirement of >10 Bytes/cycle for 
bandwidth to memory … the hardware limit is ~18 Bytes/cycle per node.  Several 
codes have a relatively low hit rate in the L1 Data-Cache, but benefit from the 
prefetch buffer, L1P.  NAMD is an exception … low memory bandwidth 
requirement but high percentage of hits in the L2 cache. 



8 

BG/Q   Resources for Developers 

IBM XL compilers have good documentation; the normal install path is: 
/opt/ibmcmp/xlf/bg/14.1/doc/en_US/pdf/*.pdf 
/opt/ibmcmp/vacpp/bg/12.1/doc/en_US/pdf/*.pdf 
 
BG/Q vector intrinsics are documented in the Fortran language reference and  
the C/C++ compiler guide. 
 
Special considerations for the OpenMP runtime for BG/Q are described in 
the compiler’s Optimization and Programming Guide … see above directories. 
 
Many details are covered in the BG/Q Application Development Redbook: 
 
www.redbooks.ibm.com 
IBM System Blue Gene Solution: Blue Gene/Q Application Development  
 



9 

Performance  Tools 

Disclaimer … I tend to use my own tools … many others have been ported 
to BlueGene/Q.  Many tools use the MPI profiling interface, and are therefore 
limited to MPI applications.  Some other tools have a wider range of 
applicability. 
 
Key capabilities … all must work at the largest scale : 
 

 statement-level profiling at scale … clock tics ties to source lines 
 used to identify hot-spots and specific code blocks 

 
 hardware counters … used to provide information on resource utilization 
 for cores and the memory hierarchy 

 
 MPI timing data … used to check time spent in MPI and to get a picture 
 of load balance 



10 

Statement-Level Profiling  - FLASH example 

  tics| Source 
     6| do i=i0-2,imax+2 
      |   !! ============ x-direction ========================= 
      |   ! YZ cross derivatives for X states 
  1446|   call  upwindTransverseFlux& 
      |        (hy_transOrder,sig(DIR_Z,:,i,j-2:j+2,k), 
      |         lambda(DIR_Y,i,j,k,:),leig(DIR_Y,i,j,k,:,:),& 
      |         reig(DIR_Y,i,j,k,:,:),TransFluxYZ(:)) 
      | 
      |   ! ZY cross derivatives for X states 
  1147|   call upwindTransverseFlux& 
      |        (hy_transOrder,sig(DIR_Y,:,i,j,k-2:k+2), 
      |         lambda(DIR_Z,i,j,k,:),leig(DIR_Z,i,j,k,:,:),& 
      |         reig(DIR_Z,i,j,k,:,:),TransFluxZY(:)) 

              ... 

In this case there is huge overhead in making the function calls, because it 
requires copying non-contiguous array sections.  It might be better to order 
the arrays differently to eliminate copies with bad-stride. 

Each “tic” corresponds to 0.01 sec of cpu time. 



11 

MPI Timing Data - GFMC 
total elapsed time       = 1328.197 seconds. 
Communication summary for all tasks: 
 
minimum communication time = 45.996 sec for task 2074 
median  communication time = 77.764 sec for task 5622 
maximum communication time = 1275.763 sec for task 0 
 
Rank 8054 had the largest heap memory used    : 1256.67 MBytes 
 
Histogram of times spent in MPI 
    time-bin    #ranks 
      45.996      7361 
     133.837       766 
     221.677         0 
     309.518         0 
     397.358         0 
     485.199         0 
     573.039         0 
     660.880         0 
     748.720         0 
     836.561        64 
     924.401         0 
    1012.241         0 
    1100.082         0 
    1187.922         0 
    1275.763         1 

The histogram shows that the vast 
majority of workers spend a very small 
fraction of time in MPI, so overall parallel 
efficiency is high. 

If there were not enough manager 
processes, one would see the workers 
waiting in MPI instead of working. 



12 

BG/Q   List Prefetch Feature 

BG/Q has an API to record a sequence of miss addresses, and 
prefetch that sequence upon playback.  This requires rather 
reproducible sequences of miss addresses, and in practice is 
beneficial mainly when there are no available methods to make 
effective use of the multiple hardware threads. 

Threads 
Per Core 

Time(sec) 
List disabled 

Time(sec) 
List enabled 

L1P Misses 
List disabled 

L1P Misses 
List enabled 

1 52.33 32.19 23.4E9 0.32E9 

4 21.18 28.65 26.1E9 10.03E9 

Data for NAS Parallel Benchmark CG, class B 16 MPI ranks, 1 node. 

The list was recorded every 4 CG iterations, and played back each 
iteration.  The overall speed-up was 1.62 when using one thread per 
core.  However, adding OpenMP to engage all four hardware threads 
gave a further improvement in performance. 



13 

List Prefetch – CG Example Code 

Use hardware counters to measure L1 D-cache misses, and use that to 
configure the size of the list prefetch buffer. 

 
call l1p_patternconfigure(1200000) 

… 

do cgit = 1, cgitmax 

   call l1p_patternstart(1)     ! Record/playback each iter 

...  The usual cg iteration work … 

   call l1p_patternstop() 

end do 

This example uses Fortran wrappers for the L1P API, defined in : 

/bgsys/drivers/ppcfloor/spi/include/l1p/pprefetch.h 

If using OpenMP or Pthreads, each thread must configure, start, and stop 
recording the miss pattern. 



14 

BG/Q   Transactional Memory 

 for (face = 0; face < nfaces; face++) {  
      ii = ii_list[face];  
      jj = jj_list[face];  
      y[ii] += A[face] * x[jj];  
      y[jj] += A[face] * x[ii];  
   } 

For effective use of TM, one 
must add loop-blocking and 
adjust the size of the 
transaction region. 

The XL compiler has 
support for 

#pragma tm_atomic  

to mark a transaction 
region for atomic 
updates. 

Use option –qtm along 
with –qsmp. 



15 

Transactional Memory Code Example 

#pragma omp parallel for private(block,fbeg,fend,face,ii,jj) schedule(static)  
   for (block = 0; block < numblocks; block++) {  
      if (block < leftover) {  
        fbeg = block*(blocksize + 1);  
        fend = fbeg + blocksize + 1;  
      }  
      else {  
        fbeg = leftover + block*blocksize;  
        fend = fbeg + blocksize;  
      }  
     #pragma tm_atomic  
     {  
         for (face=fbeg; face<fend; face++) {  
            ii = ii_list[face];  
            jj = jj_list[face];  
            y[ii] += A[face] * x[jj];  
            y[jj] += A[face] * x[ii];  
         }  
     }  
   } 

Adjust the size of the transaction region to optimize performance. 

OpenMP is used for thread management. 


